

1-Phase PV Grid-Connected Inverter User Manual SG2.0RS-S / SG2.5RS-S / SG3.0RS-S / SG3.0RS / SG3.6RS / SG4.0RS / SG5.0RS / SG6.0RS

All Rights Reserved

All Rights Reserved

No part of this document can be reproduced in any form or by any means without the prior written permission of Sungrow Power Supply Co., Ltd (hereinafter "SUNGROW").

Trademarks

SUNGROW. and other Sungrow trademarks used in this manual are owned by SUNGROW.

All other trademarks or registered trademarks mentioned in this manual are owned by their respective owners.

Software Licenses

- It is prohibited to use data contained in firmware or software developed by SUN-GROW, in part or in full, for commercial purposes by any means.
- It is prohibited to perform reverse engineering, cracking, or any other operations that compromise the original program design of the software developed by SUNGROW.

About This Manual

The manual mainly contains the product information, as well as guidelines for installation, operation and maintenance. The manual does not include complete information about the photovoltaic (PV) system. The reader can get additional information about other devices at **www.sungrowpower.com** or on the webpage of the respective component manufacturer.

Validity

This manual is valid for the following inverter models:

- SG2.0RS-S
- SG2.5RS-S
- SG3.0RS-S
- SG3.0RS
- SG3.6RS
- SG4.0RS
- SG5.0RS
- SG6.0RS

They will be referred to as "inverter" hereinafter unless otherwise specified.

Target Group

This manual is intended for inverter owners who will have the ability to interact with the inverter and qualified personnel who are responsible for the installation and commissioning of the inverter. Qualified personnel should have the following skills:

- Training for installation and commissioning of electrical system, as well as dealing with hazards
- Knowledge of the manual and other related documents
- Knowledge of the local regulations and directives

How to Use This Manual

Read the manual and other related documents before performing any work on the inverter. Documents must be stored carefully and be available at all times.

Contents may be periodically updated or revised due to the product development. The manual content of subsequent versions of the inverter may be subject to change. The latest manual can be found at **support.sungrowpower.com**.

Symbols

Important instructions contained in this manual should be followed during installation, operation and maintenance of the inverter. They will be highlighted by the following symbols.

DANGER

Indicates a hazard with a high level of risk that, if not avoided, will result in death or serious injury.

MARNING

Indicates a hazard with a medium level of risk that, if not avoided, could result in death or serious injury.

Indicates a hazard with a low level of risk that, if not avoided, could result in minor or moderate injury.

NOTICE

Indicates a situation that, if not avoided, could result in equipment or property damage.

Indicates additional information, emphasized contents or tips that may be helpful, e.g. to help you solve problems or save time.

Contents

All Rights ReservedI				
Ał	About This ManualIl			
1	Safety 1			
	1.1 PV Panels			
	1.2 Utility Grid 1			
	1.3 Inverter			
2	Product Description 4			
	2.1 System Introduction			
	2.2 Product Introduction			
	2.3 Symbols on the Product			
	2.4 LED Panel			
	2.5 Circuit Diagram			
	2.6 Function Description			
3	Unpacking and Storage			
	3.1 Unpacking and Inspection 12			
	3.2 Inverter Storage			
4	Mechanical Mounting			
	4.1 Safety during Mounting			
	4.2 Location Requirements			
	4.2.1 Environment Requirements 14			
	4.2.2 Carrier Requirements14			
	4.2.3 Angle Requirements 14			
	4.2.4 Clearance Requirements15			
	4.3 Installation Tools			
	4.4 Moving the Inverter 17			
	4.5 Installing the Inverter			
5	Electrical Connection			
	5.1 Safety Instructions			
	5.2 Terminal Description			
	5.3 Electrical Connection Overview			
	5.4 Additional Grounding Connection 22			

5.4.1 Additional Grounding Requirements22
5.4.2 Connection Procedure 22
5.5 AC Cable Connection 23
5.5.1 AC Side Requirements 23
5.5.2 Assembling the AC Connector
5.5.3 Installing the AC Connector
5.6 DC Cable Connection 27
5.6.1 PV Input Configuration 27
5.6.2 Assembling the PV Connectors
5.6.3 Installing the PV Connectors
5.7 WiNet-S Connection
5.7.1 Ethernet Communication 31
5.7.2 WLAN Communication 33
5.8 Meter Connection
5.9 DRM Connection
6 Commissioning
6.1 Inspection before Commissioning
6.2 Powering on the System
6.3 App Preparation
6.4 Creating a Plant
6.5 Initializing the Device
6.6 Configuring the Plant
7 iSolarCloud App
7.1 Brief Introduction
7.2 Installing the App
7.3 Account Registration
7.4 Login
7.4.1 Requirements
7.4.2 Login Procedure
7.5 Initial Settings
7.6 Function Overview
7.7 Home
7.8 Run Information57
7.9 Records
7.10 More
7.10.1 System Parameters 61

7.10.2 Operation Parameters	62
7.10.3 Power Regulation Parameters	63
7.10.4 Communication Parameters	67
7.10.5 Firmware Update	67
8 System Decommissioning	69
8.1 Disconnecting the Inverter	69
8.2 Dismantling the Inverter	69
8.3 Disposal of the Inverter	70
9 Troubleshooting and Maintenance	71
9.1 Troubleshooting	71
9.2 Maintenance	74
9.2.1 Maintenance Notices	74
9.2.2 Routine Maintenance	76
10 Appendix	77
10.1 Technical Data	77
10.2 Quality Assurance	82
10.3 Contact Information	83

1 Safety

The device has been designed and tested strictly according to international safety regulations. Read all safety instructions carefully prior to any work and observe them at all times when working on or with the device.

Incorrect operation or work may cause:

- Injury or death to the operator or a third party;
- Damage to the device and other properties.

All detailed work-related safety warnings and notes are specified at critical points in this manual.

The safety instructions in this manual cannot cover all the precautions that should be followed. Perform operations considering actual onsite conditions. SUNGROW shall not be held liable for any damage caused by violation of the safety instructions in this manual.

1.1 PV Panels

A DANGER

PV strings will produce electrical power when exposed to sunlight and can cause a lethal voltage and an electric shock.

- Always keep in mind that the inverter is dual power supplied. Electrical operators must wear proper personal protective equipment: helmet, insulated footwear, gloves, etc.
- Before touching the DC cables, operator must use a measuring device to ensure that the cable is voltage-free.
- The opeator must follow all warnings on the PV strings and in its manual.

1.2 Utility Grid

Follow the regulations related to the utility grid.

NOTICE

All electrical connections must be in accordance with local and national standards.

Only with the permission of the local utility grid company, the inverter can be connected to the utility grid.

1.3 Inverter

A DANGER

Danger to life from electric shocks due to live voltage

Do not open the enclosure at any time. Unauthorized opening will void warranty and warranty claims and in most cases terminate the operating license.

A WARNING

Risk of inverter damage or personal injury

- Do not connect or disconnect the PV and AC connectors when the inverter is running.
- Wait at least 10 minutes for the internal capacitors to discharge after all electric devices are removed and the inverter is powered off.
- Ensure that there is no voltage or current before connecting or disconnecting the PV and AC connectors.

WARNING

All safety instructions, warning labels, and nameplate on the inverter:

- Must be clearly legible.
- Should not be removed or covered.

ACAUTION

Risk of burns due to hot components!

Do not touch any hot parts (such as the heat sink) during operation. Only the DC switch and the LED panel can safely be touched at any time.

NOTICE

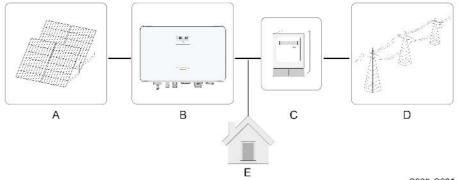
Only qualified personnel can perform the country setting. Unauthorized alteration may cause a breach of the type-certificate marking.

Risk of inverter damage due to electrostatic discharge (ESD)!

By touching the electronic components, you may damage the inverter. For inverter handling, be sure to:

- avoid any unnecessary touching;
- wear a grounding wristband before touching any connectors.

2 Product Description


2.1 System Introduction

The inverter is a transformerless 1-phase PV grid-connected inverter. As an integral component in the PV power system, the inverter is designed to convert the direct current power generated from the PV modules into grid-compatible AC current and feeds the AC current to the utility grid.

WARNING

- The inverter must only be operated with PV strings with class II protection in accordance with IEC 61730, application class A. It is not allowed for the positive pole or the negative pole of the PV strings to be grounded. This can cause damage to the inverter.
- Damages to the product due to a faulty or damaged PV installation are not covered by warranty.
- Any use other than the one described in this document is not permitted.

The intended usage of the inverter is illustrated in the following figure.

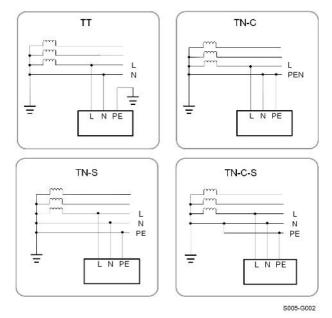
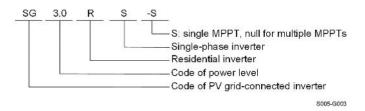

S005-G001

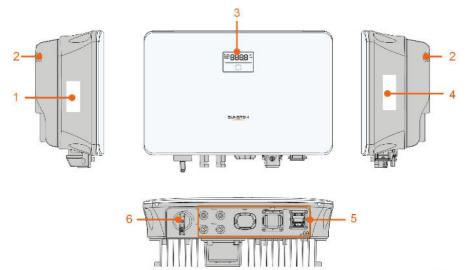
figure 2-1 Inverter Application in PV Power System

Item	Description	Note		
	DV/ atriaga	Compatible with monocrystalline silicon, polycrystalline sili-		
A	PV strings	con, and thin-film modules without grounding.		
	Inverter	SG2.0RS-S, SG2.5RS-S, SG3.0RS-S, SG3.0RS, SG3.6RS,		
В		SG4.0RS, SG5.0RS, SG6.0RS.		
С	Metering device	Meter cupboard with power distribution system.		

Item	Description	Note	
D	Utility grid	TT, TN-C, TN-S, TN-C-S.	
Е	Loads	House loads that consume electricity.	


The following figure shows the common grid configurations.

2.2 Product Introduction


Model Description

The model description is as follows (take SG3.0RS-S as an example):

Appearance

The following figure shows the dimensions of the inverter. The image shown here is for reference only. The actual product received may differ.

S005-G004

No.	Name	Description		
1	Label	Information about COM2 pin definition, supported DRM		
I		modes, etc.		
0	Hanger	Complement to the included wall mounting bracket for		
2		hanging the inverter.		
0	LED pannel	The LED screen indicates the running information and the		
3		LED indicator indicates the working state of the inverter.		
	Nameplate	To clearly identify the product, including device model, S/		
4		N, important specifications, marks of certification institu-		
		tions, etc.		
F	Electrical con-	DC terminals (SG6.0RS for example), AC terminal, addi-		
5	nection area	tional grounding terminal and communication terminals.		
6	DC switch	To safely disconnect the DC circuit whenever necessary.		

figure 2-2 Inverter Appearance

Dimensions

The following figure shows the dimensions of the inverter.

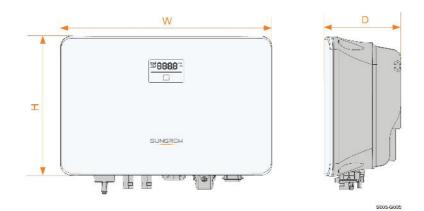


figure 2-3 Dimensions of the Inverter

Inverter Model	W (mm)	H (mm)	D (mm)
SG2.0RS-S, SG2.5RS-S, SG3.0RS-S	320	225	120
SG3.0RS, SG3.6RS, SG4.0RS, SG5.0RS, SG6.0RS	410	270	150

2.3 Symbols on the Product

Symbol	Explanation		
	Parameters on the DC side.		
AC-Grid	Parameters on the AC on-grid side.		
\bigotimes	Regulatory compliance mark.		
	TÜV mark of conformity.		
CE	CE mark of conformity.		
X	Do not dispose of the inverter together with household waste.		
×	The inverter does not have a transformer.		
\wedge	Disconnect the inverter from all the external power sources before maintenance!		
	Read the user manual before maintenance!		

SUNGROW

Symbol	Explanation	
	Burn danger due to the hot surface that may exceed 60°C.	
	Danger to life due to high voltages!	
\wedge	Do not touch live parts for 10 minutes after disconnection	
10 min	from the power sources.	
	Only qualified personnel can open and maintain the inverter.	
	Additional grounding point.	

* The table shown here is for reference only. The actual product received may differ.

2.4 LED Panel

The LED panel with a display screen and an indicator is on the front of the inverter.

figure 2-4 LED Panel

(a) Normal state

(b) Error state

No.	Name	Description	
1	E-day	Today's energy yield.	
2	Pac	Current AC power.	
	LED indicator	To indicate the working state of the inverter.	
3		Touch it to switch the information in normal state or view multiple	
		error codes in error state.	
4	Error code	The error code in the figure is just an example.	

- In normal state, the E-day and Pac information will be displayed alternately. Also you can touch the LED indicator to switch the information.
- In error state, touch the LED indicator to view multiple error codes.
- If there is no operation for 5 minutes, the display screen will be off. Touch the LED indicator to activate it.

LED color	State	Definition
	On	The inverter is operating normally.
Blue	Flashing	The inverter is at standby or startup state (not feeding power into the grid).
	On	A system fault has occured.
Red		
	Off	Both the AC and DC sides are powered down.
Gray		

table 2-1 State description of the LED indicator

2.5 Circuit Diagram

The following figure shows the main circuit of the inverter.

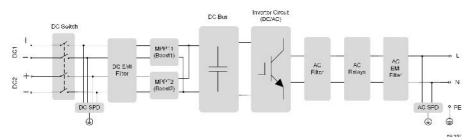


figure 2-5 Circuit Diagram (SG6.0RS for example)

- The DC switch is used to safely disconnect the DC circuit.
- The MPPT is utilized for DC input to ensure the maximum power from the PV array at different PV input conditions.
- The inverter circuit converts the DC power into AC power and generates AC power to loads or utility grid through the AC terminal.
- The protection circuit ensures the safe operation of the device and personal safety.

2.6 Function Description

Basic Function

Conversion function

The inverter converts the DC power from the PV array to the AC power, in conformity with the grid requirements.

Data storage

The inverter logs running information, error records, etc.

Parameter configuration

The inverter provides various parameter configurations for optimal operation. Parameters can be set via the iSolarCloud App or the cloud server. For further configurations, which exceeds the usual parameters configuration, please contact Sungrow.

Communication interface

The inverter is equipped with two communication interfaces. The communication device can be connected to the inverter via both interfaces.

After communication connection is established, users can view inverter information, operational data and can set inverter parameters through the iSolarCloud.

It is recommended to use the communication module from SUNGROW. Using a device from other companies may lead to communication failure or other unexpected damage.

Protection Function

Several protective functions are integrated in the inverter, including short circuit protection, grounding insulation resistance monitoring, residual current protection, grid monitoring, DC overvoltage/overcurrent protection, etc.

DRM ("AU"/"NZ")

The DRM function is only applicable to a single inverter.

The inverter provides terminals for connecting to a Demand Response Enabling Device (DRED). After the connection, the DRED asserts demand response modes (DRMs). The inverter detects and initiates a response to all supported demand response modes listed in the following table.

Mode	Explanation
DRM0	The inverter is in the state of standby.

Feed-in Limitation

Set the feed-in limitation value via iSolarCloud App. When the smart energy meter detects that the export power is greater than the limit value, the inverter will reduce the output power within the specified range.

PID Recovery

The inverter is equipped with PID phenomenon recovery function to improve the PV power generation. During the power generation process, the inverter could carry out a main Anti-PID function without any influence to the grid side thanks to a particular technology.

The PID recovery function is disabled by default. Enable the function via iSolarCloud App when there is PV power in the daytime. During the inverter standby process with no irradiance, an additional PID recovery function could apply inverse voltage to PV modules, to restore the degraded modules.

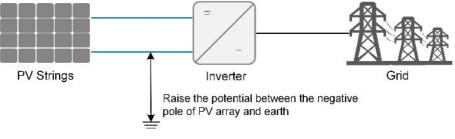


figure 2-6 PID Recovery Scheme

DANGER

Keep the DC switch "ON" in the PID recovery process. During the process, there is voltage hazard between inverter/PV module live conductors and ground. Do not touch any of them.

AFCI Function(Optional)

AFCI activation

This function can be enabled to detect whether arc occurs in the DC cable of the inverter.

AFCI self-test

This function is intended to detect whether the AFCI function of the inverter is normal.

3 Unpacking and Storage

3.1 Unpacking and Inspection

The device is thoroughly tested and strictly inspected before delivery. Nonetheless, damage may still occur during shipping. For this reason, please conduct a thorough inspection after receiving the device.

- Check the packing case for any visible damage.
- Check the scope of delivery for completeness according to the packing list.
- Check the inner contents for damage after unpacking.

Contact SUNGROW or the transport company in case of any damage or incompleteness, and provide photos to facilitate services.

Do not dispose of the original packing case. It is recommended to store the device in the original packing case when the device is decommissioned.

3.2 Inverter Storage

Proper storage is required if the inverter is not installed immediately.

- Store the inverter in the original packing case with the desiccant inside.
- The storage temperature must be always between -30°C and +70°C, and the storage relative humidity must be always between 0 and 95 %, non-condensing.
- In case of stacking storage, the number of stacking layers should never exceed the limit marked on the outer side of the packing case.
- The packing case should be upright.
- If the inverter has been stored more than half a year, the qualified personnel should thoroughly check and test it before installation.

4 Mechanical Mounting

A WARNING

Respect all local standards and requirements during mechanical installation.

4.1 Safety during Mounting

A DANGER

Make sure there is no electrical connection before installation.

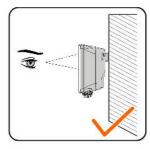
In order to avoid electric shock or other injury, make sure that holes will not be drilled over any electricity or plumbing installations.

ACAUTION

Risk of injury due to improper handling

- Always follow the instructions when moving and positioning the inverter.
- Improper operation may cause injuries or serious wounds.

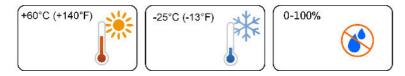
In the case of poor ventilation, the system performance may compromise.


• Keep the heat sinks uncovered to ensure heat dissipation performance.

4.2 Location Requirements

Select an optimal mounting location for safe operation, long service life and expected performance.

- The inverter with protection rating IP65 can be installed both indoors and outdoors.
- Install the inverter at a place convenient for electrical connection, operation, and maintenance.



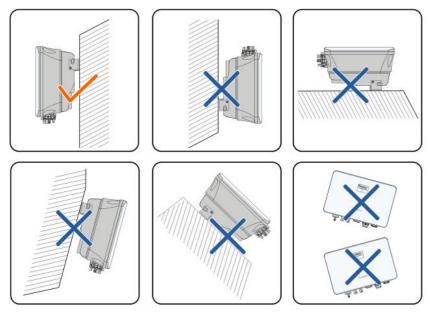
S005-I001

4.2.1 Environment Requirements

- The installation environment must be free of inflammable or explosive materials.
- The location should be not accessible to children.
- The ambient temperature and relative humidity must meet the following requirements.

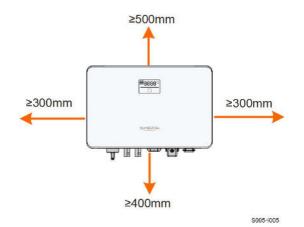
- Avoid direct exposure to sun, rain and snow.
- The inverter should be well ventilated. Ensure air circulation.

4.2.2 Carrier Requirements


The concrete wall should be capable of withstanding a force of four times the weight of the inverter and be suitable for the dimensions of the inverter.

The installation carrier should meet the following requirements:

4.2.3 Angle Requirements


Install the inverter vertically. Never install the inverter horizontally, or at forward/backward tilted, side tilted, or upside down.

S005-1004

4.2.4 Clearance Requirements

Reserve enough clearance around the inverter to ensure sufficient space for heat dissipation.

Install the inverter at an appropriate height for ease of viewing the screen and LED indicator and operating switch(es).

4.3 Installation Tools

Installation tools include but are not limited to the following recommended ones. If necessary, use other auxiliary tools on site.

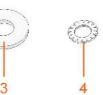
table 4-1 Tool specification

4.4 Moving the Inverter

Before installation, remove the inverter from the packing case and move it to the installation site. Follow the instructions below as you move the inverter:

- Always be aware of the weight of the inverter.
- Lift the inverter using the handles positioned on both sides of the inverter.
- Move the inverter by one or two people or by using a proper transport tool.
- Do not release the equipment unless it has been firmly secured.

4.5 Installing the Inverter

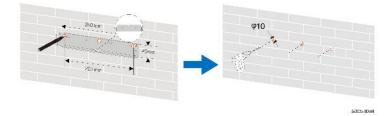

Inverter is installed on the wall by means of wall-mounting bracket and the expansion plug sets.

The expansion plug set shown below is recommended for the installation.

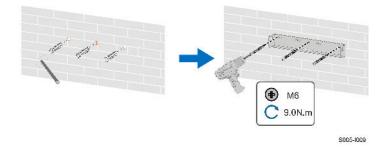
(2) Expansion tube

(1) Self-tapping screw M6 (3) Fender washer (4) Spri

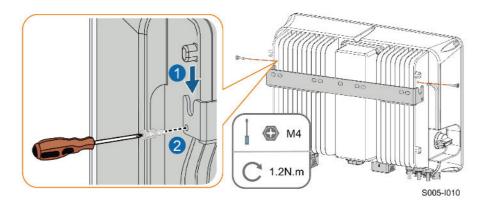
(4) Spring washer


step 1 Place the wall-mounting bracket to a proper position on the wall. Mark the positions and drill the holes.

NOTICE


Observe the level on the bracket and adjust until the bubble is in the middle position.

The depth of the holes should be about 70 mm.



step 2 Place the expansion tubes into the holes. Then secure the wall-mounting bracket to the wall firmly with the expansion bolt sets.

step 3 Lift the inverter and slide it down along the wall-mounting bracket to make sure they match perfectly. Use two screw sets to lock both left and right sides.

- - End

5 Electrical Connection

5.1 Safety Instructions

Prior to any electrical connections, keep in mind that the inverter has dual power supplies. It is mandatory for the qualified personnel to wear personal protective equipments (PPE) during the electrical work.

DANGER

Danger to life due to a high voltage inside the inverter!

- The PV string will generate lethal high voltage when exposed to sunlight.
- Before starting electrical connections, disconnect the DC and AC circuit breakers and prevent them from inadvertent reconnection.
- Ensure that all cables are voltage free before performing cable connection.

A WARNING

- Any improper operations during cable connection can cause device damage or personal injury.
- Only qualified personnel can perform cable connection.
- All cables must be undamaged, firmly attached, properly insulated and adequately dimensioned.

NOTICE

Comply with the safety instructions related to the PV strings and the regulations related to the utility grid.

- All electrical connections must be in accordance with local and national standards.
- Only with the permission of the local utility grid company, the inverter can be connected to the utility grid.

5.2 Terminal Description

All electrical terminals are located at the bottom side of the inverter.

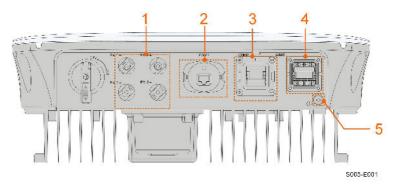


figure 5-1 Terminals (SG3.0RS for example)

* The image shown here is for reference only. The actual product received may differ.

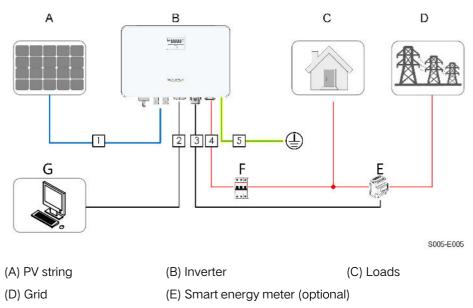
			Decisive Volt-
No.	Name	Description	age
			Classification
	PV1+, PV1 - , PV2+,	MC4 terminals for PV input.	
1	PV2-	The terminal number depends on	DVC-C
	1 12	inverter model.	
		Communication accessory port to	
2	COM1	be connected to WiNet-S commu-	DVC-A
		nication module.	
		Communication connection for	
3	COM2	RS485, DRM and smart energy	DVC-A
		meter.	
4	GRID	AC terminal to connect to the grid.	DVC-C
5		Additional grounding terminal.	Not applicable

	E 1	Taunalinal	Description	
table	5-1	Terminal	Description	

The pin definition of COM2 terminal is shown in the following label.

R\$485	Meter	DRM	R\$D
A1	A2	R	R\$D-1
В1	B 2	c	RSD-2

figure 5-2 Label of COM2 Terminal


table 5-2 Label Description of COM2 Terminal

Label		Description	
RS485	A1, B1	Reserved	
Meter	A2, B2	For the smart energy meter	

Label		Description
DRM	R, C	For external Demand Response Enabling Device ("AU"/"NZ")
RSD	RSD-1, RSD-2	Reserved

5.3 Electrical Connection Overview

The electrical connection should be realized as follows:

(F) AC circuit breaker (G) External device

table 5-3 Cable Requirements

No.	Cable	Туре	Cable Diameter	Wire Conductor Cross-section
1	DC cable	Single or multi-core copper wire com- plying with 600 V and 20 A standard	6 mm – 9 mm	4 mm² – 6 mm²
2	Ethernet cable	CAT 5E outdoor shielded network cable	4.8 mm – 6 mm	8 * (0.08 – 0.2) mm²
3	Meter RS485 cable ⁽¹⁾	Shielded twisted pair	4.8 mm – 6 mm	2 * (0.5 – 1.0) mm²

No.	Cable	Туре	Cable Diameter	Wire Conductor Cross-section
4	AC cable ⁽²⁾	Outdoor 3-core copper wire cable	12 mm – 25 mm	4 mm ² – 6 mm ²
5	Additional Grounding cable	Outdoor single-core copper wire cable	The same as that o AC cable	f the PE wire in the

(1) The cable requirements for **COM2** terminal connection are the same.

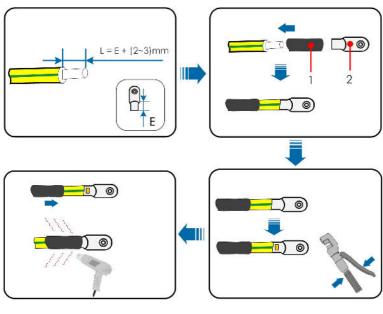
(2) All the AC wires should be equipped with correctly colored cables for distinguishing. Please refer to related standards about the wiring color.

5.4 Additional Grounding Connection

WARNING

- Since the inverter is transformerless, neither the negative pole nor the positive pole of the PV string must be grounded. Otherwise, the inverter will not operate normally.
- Connect the additional grounding terminal to the protective grounding point before AC cable connection, PV cable connection, and communication cable connection.
- The ground connection of this additional grounding terminal cannot replace the connection of the PE terminal of the AC cable. Make sure those terminals are both grounded reliably. SUNGROW shall not be held liable for any damage caused by the violation.

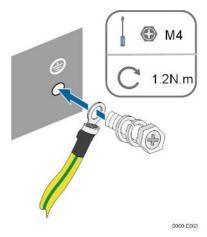
5.4.1 Additional Grounding Requirements


All non-current carrying metal parts and device enclosures in the PV power system should be grounded, for example, mounts of PV modules and the inverter enclosure. When there is only one inverter in the PV system, connect the additional grounding cable to a nearby grounding point.

When there are multiple inverters in the PV system, connect grounding points of all inverters and the PV array frames to the equipotential cable (according to the onsite conditions) to implement an equipotential connection.

5.4.2 Connection Procedure

Additional grounding cable and OT/DT terminal are prepared by customers.


step 1 Prepare the cable and OT/DT terminal.

(1) Heat shrink tubing

(2) OT/DT terminal

step 2 Remove the screw on the grounding terminal and fasten the cable with a screwdriver.

step 3 Apply paint to the grounding terminal to ensure corrosion resistance.

- - End

5.5 AC Cable Connection

5.5.1 AC Side Requirements

Connect the inverter to the grid only after getting an approval from the local electric power company.

Before connecting the inverter to the grid, ensure the grid voltage and frequency comply with requirements, for which, refer to **"Technical Date"**. Otherwise, contact the electric power company for help.

AC Circuit Breaker

An independent two-pole circuit breaker must be installed on the output side of the inverter to ensure safe disconnection from the grid. The recommended specifications are as follows.

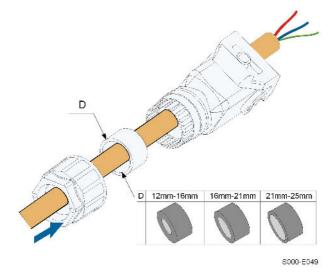
Inverter Model	Recommended Specification
SG2.0RS-S/SG2.5RS-S/SG3.0RS-S	25 A
SG3.0RS/SG3.6RS/SG4.0RS/SG5.0RS	32 A
SG6.0RS	40 A

NOTICE

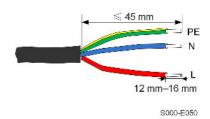
- Determine whether an AC circuit breaker with greater overcurrent capacity is required based on actual conditions.
- Multiple inverters cannot share one circuit breaker.
- Never connect a load between the inverter and the circuit breaker.

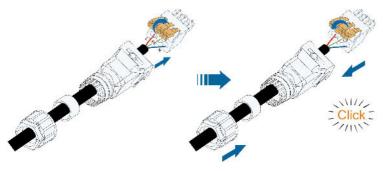
Residual Current Monitoring Device

With an integrated universal current-sensitive residual current monitoring unit included, the inverter will disconnect immediately from the mains power once a fault current with a value exceeding the limit is detected.


However if an external residual current device (RCD) is mandatory, the switch must be triggered at a residual current of 300 mA (recommended), or it can be set to other values according to local regulations. For example in Australia, the inverter can use an additional 30 mA (type A) RCD in installations.

5.5.2 Assembling the AC Connector


step 1 Unscrew the swivel nut of the AC connector.


step 2 Thread the AC cable of appropriate length through the swivel nut, the sealing ring and the housing.

step 3 Remove the cable jacket by less than 45 mm, and strip the wire insulation by 12 mm – 16 mm.

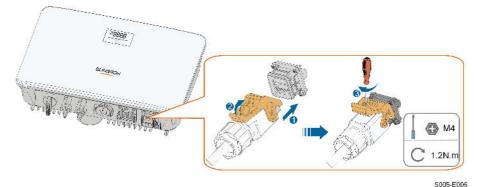
step 4 Open the clamp on the spring-loaded terminal and fully insert the wires into the corresponding holes. Then close the clamp and push the terminal plug into the housing until there is an audible click.

S000-E051

NOTICE

Observe the plug assignment.

- Do not connect the L line to the "PE" terminal or the PE wire to the "N" terminal. Otherwise, unrecoverable damage to the inverter may follow.
- Do not connect the L line and the N line in reverse, otherwise the inverter may not operate normally.
- step 5 Ensure that the wires are securely in place by slightly pulling them. Tighten the swivel nut to the housing.



- - End

5.5.3 Installing the AC Connector

High voltage may be present in inverter!
Ensure all cables are voltage-free before electrical connection.
Do not connect the AC circuit breaker until all inverter electrical connections are
completed.

- step 1 Disconnect the AC circuit breaker and secure it against reconnection.
- step 2 Lift the locking part upwards and insert the AC connector into the GRID terminal on the bottom side of the inverter. Then press the locking part and lock it with the screw.

SUNGROW

- step 3 Connect the PE wire to ground and the phase lines and the "N" line to AC circuit breaker. Then Connect the AC circuit breaker to electric board.
- step 4 Make sure all wires are firmly installed via the right torque tool or dragging the cables slightly.

- - End

5.6 DC Cable Connection

A DANGER

Danger of electric shock!

The PV array will generate lethal high voltage once exposed to sunlight.

A WARNING

Make sure the PV array is well insulated to ground before connecting it to the inverter.

NOTICE

Risk of inverter damage! Observe the following requirements. Failure to do so will void guarantee and warranty claims.

- Make sure the maximum DC voltage and the maximum short circuit current of any string never exceed inverter permitted values specified in "Technical Data".
- Mixed use of different brand or model of PV modules in a PV string or a compromised PV string design composed with PV modules from rooftoops of different orientation may not damage inverter but will cause system bad performance!
- The inverter enters standby state when the input voltage ranges between 560 V and 600 V. The inverter returns to running state once the voltage returns to the MPPT operating voltage range, namely, 40 V to 560 V.

5.6.1 PV Input Configuration

- The inverters SG2.0RS-S / SG2.5RS-S / SG3.0RS-S have one PV input with one MPP tracker.
- The inverters SG3.0RS / SG3.6RS / SG4.0RS / SG5.0RS / SG6.0RS have two PV inputs, each with independent MPP tracker. Each DC input area can operate independently.
- The PV strings to the same DC input area should have the same type, the same number of PV panels, identical tilt and identical orientation for maximum power.

The PV strings to two DC input areas may differ from each other, including PV module type, number of PV modules in each string, angle of tilt, and installation orientation.

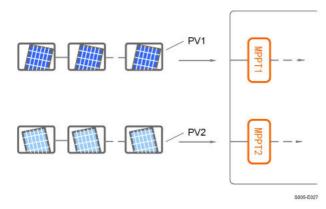
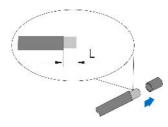


figure 5-3 PV Input Configuration (SG6.0RS for example)

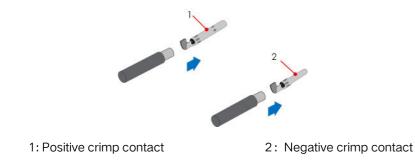
Prior to connecting the inverter to PV inputs, the specifications in the following table should be met:

Inverter Model	Open-circuit Voltage Limit	Max. current for input connector
All models	600 V	20 A

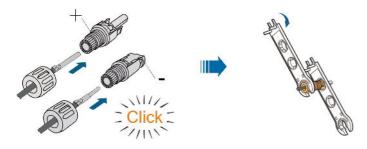
5.6.2 Assembling the PV Connectors


i.

▲ DANGER High voltage may be present in the inverter! • Ensure all cables are voltage-free before performing electrical operations.


• Do not connect the AC circuit breaker before finishing electrical connection.

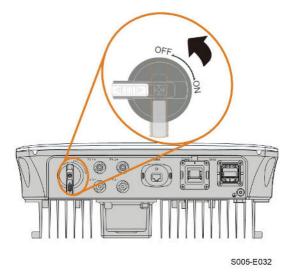
SUNGROW provides corresponding PV connectors in the scope of delivery for quick connection of PV inputs. To ensure IP65 protection, use only the supplied connector or the connector with the same ingress of protection.


step 1 Strip the insulation from each DC cable by 7 mm – 8 mm.

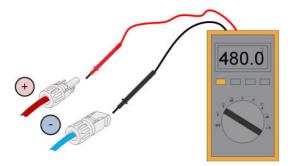
step 2 Assemble the cable ends with the crimping pliers.

step 3 Lead the cable through cable gland, and insert the crimp contact into the insulator until it snaps into place. Gently pull the cable backward to ensure firm connection. Tighten the cable gland and the insulator (torque 2.5 N.m to 3 N.m).

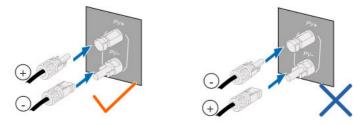
step 4 Check for polarity correctness.


NOTICE

If the PV polarity is reversed, the inverter will be in a fault or alarm state and will not operate normally.


--End

5.6.3 Installing the PV Connectors


step 1 Rotate the DC switch to "OFF" position.

step 2 Check the cable connection of the PV string for polarity correctness and ensure that the open circuit voltage in any case does not exceed the inverter input limit of 600 V.

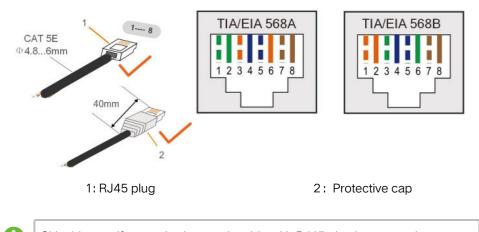
step 3 Connect the PV connectors to corresponding terminals until there is an audible click.

NOTICE

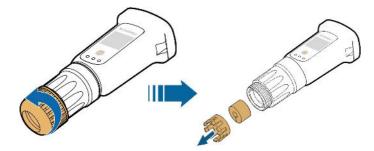
- Check the positive and negative polarity of the PV strings, and connect the PV connectors to corresponding terminals only after ensuring polarity correctness.
- Electric arc or contactor overtemperature may occur if the PV connectors are not firmly in place, and SUNGROW shall not be held liable for any damage caused due to this operation.

step 4 Seal the unused PV terminals with the terminal caps.

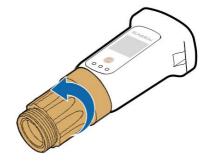
- - End


5.7 WiNet-S Connection

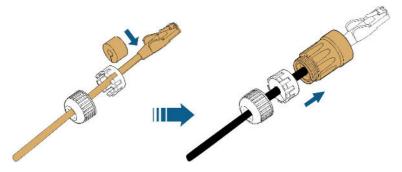
The WiNet-S module supports Ethernet communication and WLAN communication. It is not recommended to use both communication methods at the same time. For details, see the quick guide for the WiNet-S module. Scan the following QR code for the quick guide.

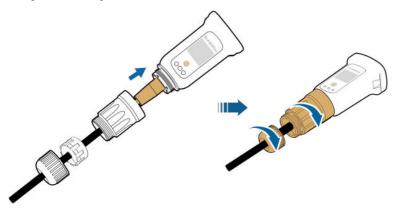

5.7.1 Ethernet Communication

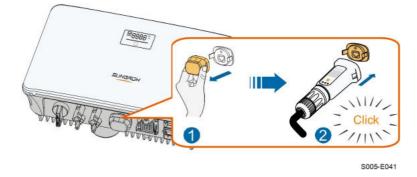
step 1 (Optional) Strip the insulation layer of the communication cable with an Ethernet wire stripper, and lead the corresponding signal cables out. Insert the stripped communication cable into the RJ45 plug in the correct order, and crimp it with a crimper.



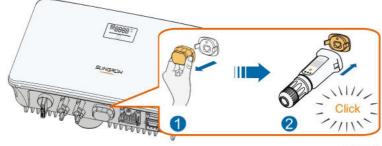
Skip this step if a standard network cable with RJ45 plug is prepared.


step 2 Unscrew the swivel nut from the communication module and take out the inner sealing ring.


step 3 Unscrew the housing from the communication module.


step 4 Thread the network cable through the swivel nut and gasket. Afterwards, route the cable into the opening of the sealing. Finally, insert the cable through the housing.

step 5 Insert the RJ45 plug into the front plug connector until there is an audible click and tighten the housing. Install the gasket and fasten the swivel nut.

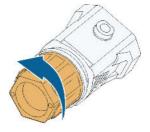


step 7 Slightly shake it by hand to determine whether it is installed firmly.

- - End

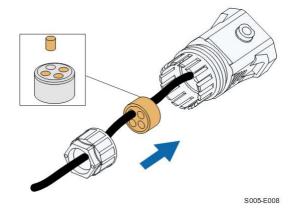
5.7.2 WLAN Communication

- step 1 Remove the waterproof lid from the COM1 terminal.
- step 2 Install the module. Slightly shake it by hand to determine whether it is installed firmly, as shown below.

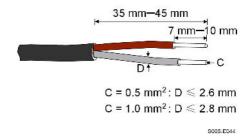

S005-E042

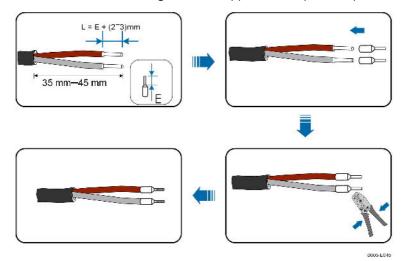
step 3 Refer to the guide delivered with the module for the set-up.

- - End

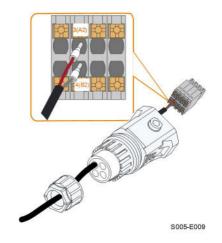

5.8 Meter Connection

step 1 Unscrew the swivel nut from the communication connector.

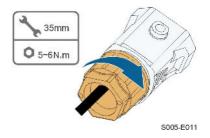

S005-E007



step 2 Remove the seal and lead the cable through the cable gland.

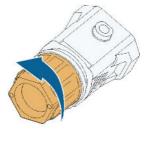

step 3 Remove the cable jacket and strip the wire insulation.

step 4 (Optional) When using a multi-core multi-strand wire cable, connect the wire head to the cord end terminal. In case of single-strand copper wire, skip this step.


step 5 Plug the wires into the corresponding terminals as shown in the following figure. Ensure that the wires are securely in place by slightly pulling them.

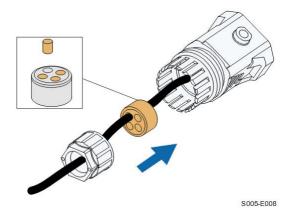
step 6 Insert the terminal plug into the COM2 terminal at the bottom side of the inverter and then install the housing.

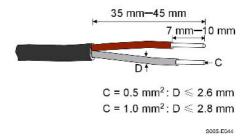
step 7 Slightly pull out the cable and then fasten the swivel nut. Lock the connector with the screw.


- - End

5.9 DRM Connection

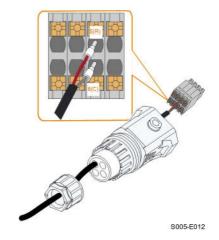
In Australia and New Zealand, the inverter supports DRM0 as specified in the standard AS/NZS 4777.

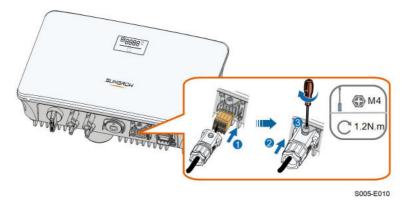

The DRM0 mode is asserted by shorting terminals **R** and **C** on the inverter.

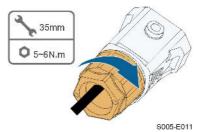


S005-E007

step 2 Remove the seal and lead the cable through the cable gland.


step 3 Remove the cable jacket and strip the wire insulation.


step 4 (Optional) When using a multi-core multi-strand wire cable, connect the wire head to the cord end terminal. In case of single-strand copper wire, skip this step.


step 5 Plug the wires into the corresponding terminals as shown in the following figure. Ensure that the wires are securely in place by slightly pulling them.

step 6 Insert the terminal plug into the COM2 terminal at the bottom side of the inverter and then install the housing.

step 7 Slightly pull out the cable and then fasten the swivel nut. Lock the connector with the screw.

- - End

6 Commissioning

6.1 Inspection before Commissioning

Check the following items before starting the inverter:

- All equipment has been reliably installed.
- DC and AC switches are in the "OFF" position.
- The ground cable is properly and reliably connected.
- The AC cable is properly and reliably connected.
- The DC cable is properly and reliably connected.
- The communication cable is properly and reliably connected.
- The vacant terminals are sealed.
- No foreign items, such as tools, are left on the top of the machine or in the junction box (if there is).
- The AC circuit breaker is selected in accordance with the requirements of this manual and local standards.
- All warning signs & labels are intact and legible.

6.2 Powering on the System

If all of the items mentioned above meet the requirements, proceed as follows to start up the inverter for the first time.

- step 1 Turn on the AC circuit breaker between the inverter and the grid.
- step 2 Rotate the DC switch of the inverter to "ON" position.
- step 3 Turn on the external DC switch (if applicable) between the inverter and the PV string.
- step 4 If the irradiation and grid conditions meet requirements, the inverter will operate normally. Observe the LED indicator to ensure that the inverter operates normally. Refer to "2.4 LED Panel" for LED screen introduction and LED indicator definition.
- step 5 Refer to the quick guide for WiNet-S for its indicator definition.

- - End

6.3 App Preparation

step 1 Install the iSolarCloud App with latest version. Refer to "7.2 Installing the App".

SUNGROW

- step 2 Register an account. Refer to "7.3 Account Registration". If you have got the account and password from the distributor/installer or SUNGROW, skip this step.
- step 3 Download the firmware package to the mobile device in advance. Refer to "7.10.5 Firmware Update". This is to avoid download failure due to poor on-site network signal.

- - End

6.4 Creating a Plant

Screenshots of creating a plant are for reference only. For details, refer to the actual screen.

step 1 Open the App, tap 🔍 at the upper right corner and tap Select Server. Choose the same server as when registering.

Login	۵
	2
Remember Me	
LOGIN	
Forgot Password	
-	
Select Server	
WLAN Configuration	
Firmware Download	
Language	
Cancel	

figure 6-1 Selecting the Server

- step 2 Enter the account and password on the login screen and tap Login to enter the App home screen.
- step 3 Tap the icon 🕀 at the upper right corner to enter the creating screen.

figure 6-2 Creating Power Plant

step 4 Select plant type to RESIDENTIAL and inverter type to PV.

< BACK	× CANCEL	< BACK	× CANCEL
SELECT PLANT TYPE		SELECT INVERTE	R TYPE
Select plant type to choose the right communication device.		Select inverter type to choose the right communication device. Tap "PV" when all inverters of the plant are PV inverters. Tap "HYBRIC" when the plant has at least one hybrid inverter.	
COMMERC	IAL		PV
		ну	'BRID

figure 6-3 Selecting Plant/Inverter Type

step 5 Scan the QR code on the communication device or manually enter the serial number of the communication device. Tap Next after the QR code is identified or the serial number entered is correct and then tap CONFIRM. Your mobile device is thus connected to the WiNet-S successfully.

figure 6-4 Connecting Mobile Device to WiNet-S

step 6 Select the Internet access mode to WLAN(CONNECTED) or ETHERNET according to actual connection. The following description is for WLAN access mode.

< BACK	× CANCEL
INTERNET ACCE	SS
Select how the inverter and to iSolarCloud.	shall connect to the internet
	ONNECTED)

figure 6-5 Selecting Internet Access Mode

step 7 The EASYCONNECT INSTRUCTION screen will prompt. Press the multi-function button on the WiNet-S module once to turn on EasyConnect mode. The WLAN indicator on WiNet-S blinks quickly when this mode is turned on. Return to the App and the screen displays successful connection to the inverter WLAN. Tap NEXT.

figure 6-6 Turn on EasyConnect Mode

NOTICE

The EasyConnect mode can be used only when the router is 2.4 GHz. If the EasyConnect mode fails, refer to the WiNet-S quick guide for the instructions of other modes.

step 8 Connect the inverter to router network. Enter network name and password. Tap NEXT and the screen display prompt information of successful connection to the router network.

< BACK	× CANCEL
ENTER LOCAL NET	VORK
Enter the password for the k 2.4Ghz is supported.	cal network. Only
Name	
Password	
	Sec

figure 6-7 Connecting Inverter to Router Network

- - End

6.5 Initializing the Device

The inverter is successfully connected to the router.

If there is no latest equipment upgrade package, skip steps 1 and 2.

The actual initializing procedure may differ due to different countries. Please follow the actual App guidance.

step 1 If a latest equipment upgrade package is available, the following prompt window pops up. Tap UPDATE NOW to download the latest update package.

	rovides important or your device.
rieter mane er	ure the DC side is when updating.
CANCEL	UPDATE NOW

figure 6-8 Upgrade Reminder

step 2 After download, it would take around 15 minutes to update. After successful upgrade, the screen will show the version numbers before and after the upgrade as well as the upgrade time. Tap NEXT.

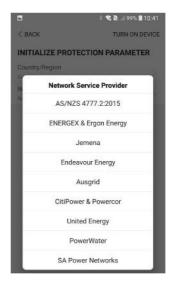
XCANCEL		
UPDATING INVERTER	FIRMWARE UP	DATED
Please wait, it would take around 15 minute(s).	Firmware is up to date	
Note: Make sure the DC side is powered on when updating. Stay connected to this device and stay on this page for a successful update.		>
\bigcirc	Old Version:	BERYL-5_03011.01.17 BERYL-5_01011.01.04
\bigcirc	New Version:	BERYL-S_03011.01.16 BERYL-S_01011.01.03
0%	Update Time:	2021-02-05 16:32:49

figure 6-9 Upgrading Inverter

NOTICE

If the communication equipment is upgraded, after successful upgrade, check and confirm that the phone is connected to the inverter WLAN.

step 3 Tap Country/Region and select the country where the inverter is installed at. The supported countries and corresponding settings are as follows.


Country/Region	Setting
Belgium ("BE")	Belgium
Netherlands ("NL")	Netherlands
Portugal / Turkey / Hungary	EN50549-1

Country/Region	Setting
Australia ("AU")	Australia
New Zealand ("NZ")	New Zealand
Countries not listed above	Other 50Hz or Other 60Hz

NOTICE

The parameter **Country/Region** must be set to the country (region) where the inverter is installed at. Otherwise, the inverter may report errors.

step 4 When the country is set to Australia, additionally set the applicable network service provider and then the grid type.

The image shown here is for reference only. Refer to the actual interface for the supported network service providers.

table 6-1 Description of Network Service Provider and Grid Type

Network Service Provider	Grid Type
AS/NZS 4777.2:2015	/
ENERGEX & Ergon Energy	 STNW1170: single-phase < 10 kVA & three-phase < 30 kVA
	• STNW1174: 30 kVA < $P_{n} \leqslant$ 1500 kVA
Jemena	 ≤ 10 kVA per phase (or 30 kVA per three phase)
	• ELE GU 0014: 30 kVA - 200 kVA
Endeavour Energy	MDI 0043

Network Service Provider	Grid Type	
Ausgrid	NS194	
CitiPower & Powercor	 ≤ 5 kVA for single-phase & 30 kVA for three-phase 	
	 > 30 kVA three-phase 	
United Energy	 UE-ST-2008.1: ≤ 10 kVA for single- phase & 30 kVA for three-phase 	
	 UE-ST-2008.2: > 30 kVA three- phase 	
PowerWater	AS/NZS 4777.2:2015	
SA Power Networks	TS129-2019: < 10 kW for single- phase & 30 kW for three-phase	
SA FOWEI INELWOIKS	• TS130-2017: > 30 kW & ≤ 200 kW	
	• TS131-2018: > 200 kW	

step 5 Initialize parameters according to local grid requirements, including grid type, reactive power regulation mode, etc. The screen displays that the inverter is successfully configured.

Country/Region	
Grid Type Low Voltage	
ware contrille	
Feed-in Limitation	
Feed-in Limitation Value	
20.00 kW	
Feed-in Limitation Ratio 100.0 %	
Reactive Power Regulation	on Mode
Reactive Power Ratio	
NEX	π

figure 6-10 Initializing Parameters

- - End

6.6 Configuring the Plant

The inverter is successfully added to the plant and initialized. Refer to the guidance in previous sections.

The distributor/installer who creates a plant for the end user needs to get the end user's e-mail address. In configuring a plant, the e-mail address is required, and each e-mail address can be registered only once.

step 1 The App screen will display the added inverter. Tap NEXT to configure the plant.

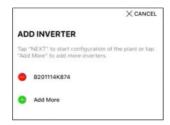


figure 6-11 Display the Added Inverter

step 2 Fill in the plant information. The fields marked with * must be filled in.

< BACK	\times cancel
CONFIGURE PLANT	
Enter plant information.	
Plant Name	
B201114K874	
Country/Region	
	~
Time Zone	
Please Select	
Plant Address	
Postal Code	
Grid-connected Date	
2021-02-05	\sim
NEXT	
NEXT	

figure 6-12 Entering Plant Information

step 3 (Optional) Fill in the tariff information. The electricity price can be set to a specific value or Time-of-Use tariff.

< BACK	× CANCEL
CONFIGURE TARIFF	
Enter tariff information to calculate yo plant revenue.	our
Unit	
CNY	~
Feed-in Tariff (CNY/kWh) Please Enter	
Time-of-Use Tarit	
Consumption Tariff (CNY/kWh)	
Time-of-Use Tariff	
NEXT	

figure 6-13 Entering Tariff Information

step 4 Fill in the end user's e-mail address. The first time you fill in the end user's e-mail address, the system will create an account for the end user and send an email to the end user. The end user can activate the account via the email.

The Distributor/installer creates plants for the end user and can manage the plants by default.

< BACK	× CANCEL
CONNECT PLANT OWNER	2
Please Enter Owner's Email Address	
 Email 	
Please Enter	

figure 6-14 Entering Owener's e-mail

step 5 Tap NEXT to wait for the inverter to connect to the iSolarCloud.



figure 6-15 Configuration Completed

step 6 (Optional) Tab View live data for the device, tick Inverter or Total Plant Devices and tab ALL PLANTS OPEN. The clock symble indicates that the live data view function is successfully enabled. Tab the inverter to view the live data about voltage, current, power or curve.

< BACK	Q	< BACK	Q
Testsungrow		Testsungrow	
Current: All	V	Current: All	V
SG20RT(COM1-001)_001_001	<u>a</u>	\$G20RT(COM1-001)_001_001	Ō
Inverter	10.	Inverter	
Total Active Power: 0 W		Total Active Power: 0 W	
Total DC Power: 0 W		Total DC Power: 0 W	
Total Plant (Devices 📴		
Live data can be used for up to 3 hours	per day.	Total Plant De	wices
ALL PLANTS CLOSED		CLOSE	
ALL PLANTS OPEN		CHERN	

figure 6-16 Live Data View Function Setting

Consult Sungrow service for the devices that support live data function.

step 7 Tab BACK to the COMPLETED screen. Tab PDF REPORT to export the plant configuration report. step 8 Tab BACK to the COMPLETED screen. Tab DASHBOARD to return and manually refresh the page until the newly created plant is displayed with status commissioned.

- - End

7 iSolarCloud App

7.1 Brief Introduction

The iSolarCloud App can establish communication connection to the inverter via the WLAN, providing remote monitoring, data logging and near-end maintenance on the inverter. Users can also view inverter information and set parameters through the App. * To achieve direct login via WLAN, the wireless communication module developed and manufactured by SUNGROW is required. The iSolarCloud App can also establish communication connection to the inverter via Ethernet connection.

• This manual describes only how to achieve near-end maintenance via WLAN direct connection.

• Screenshots in this manual are based on the V2.1.6 App for Android system, and the actual interfaces may differ.

7.2 Installing the App

Method 1

Ħ

Download and install the App through the following application stores:

- MyApp (Android, mainland China users)
- Google Play (Android, users other than mainland China ones)
- App Store (iOS)

Method 2

Scan the following QR code to download and install the App according to the prompt information.

The App icon appears on the home screen after installation.

7.3 Account Registration

The account distinguishes two user groups, end user and distributor/installer.

- The end user can view plant information, create plants, set parameters, share plants, etc.
- The distributor/installer can help the end user to create plants, manage, install, or maintain plants, and manage users and organizations.

step 1 Tap REGISTER to enter the registration screen.

JSER REGISTRATION	
Account Type	
BASE Plant	
Please select the relevant serve not available, please select the station	
Distributor/insta	aller
Distributor/Installer is the perso or/and manage the plant, and s end user	
End User	
End User is the person who will one inverter or more	own or has owned

step 2 Select the relevant server for your area.

step 3 Select End user or Distributor/Installer to enter the corresponding screen.

Email	@gmail.com ∨
Send Verific	Help
Verification Code	
Password	
Confirm Password	
Country/Region	
Company Name	
Code of Upper Level In	staller/Distributor

step 4 Fill in the registration information, including email, verification code, password and affirmance and country (region). The distributor/installer has the permission to fill in the company name and the code of upper level distributor/installer.

The code of upper level distributor/installer can be obtained from the upper level distributor/installer. Only when your organization belongs to the upper level distributor/installer organization, can you fill in the corresponding code.

step 5 Tick Accept privacy protocol and tap Register to finish the registration operation.

- - End

7.4 Login

7.4.1 Requirements

The following requirements should be met:

- The AC and DC sides or the AC side of the inverter is powered-on.
- The WLAN function of the mobile phone is enabled.
- The mobile phone is within the coverage of the wireless network produced by the communication module.

7.4.2 Login Procedure

step 1 For the WiNet-S module, press the multi-function button 3 times to enable the WLAN hotspot. No password is required and the valid time is 30 minutes.

figure 7-1 Enabling the WLAN Hotspot

- step 2 Connect the mobile phone to the WLAN network named as "SG-xxxxxxxxx" (xxxxxxxxx is the serial number indicated on the side of the communication module).
- step 3 Open the App to enter the login screen. Tap Local Access to enter the next screen.
- step 4 Select WLAN and select the device (SN), then enter the password and tap LOGIN.

The default account is "user" and the initial password is "pw1111" which should be changed for the consideration of account security. Tap "More" at the lower right corner on home page and choose "Change Password".

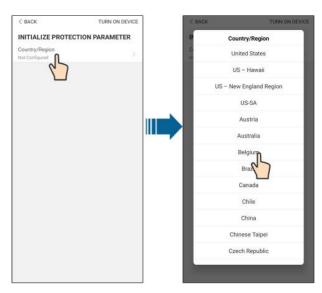
Login Account	@ ···	LOCAL ACCESS	wcted P
Password	ko N	Bluetooth SELECT DEVICE	×
REGIST Forgot Password	ER		
i ugur asanvu			
		Account Lagis Passioned	
Visitor Login	Loca	LOGIN BEGIN SEARCHING	

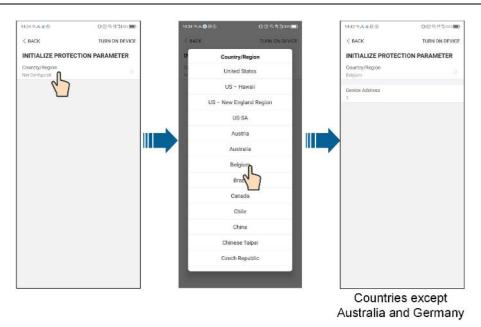
figure 7-2 WLAN Local Access

step 5 If the inverter is not initialized, navigate to the quick setting screen to initialize the protection parameters. For details, please refer to "Initial Settings".

NOTICE

The "Country/Region" must be set to the country where the inverter is installed at. Otherwise, the inverter may report errors.




figure 7-3 WLAN Local Access

- step 6 After finishing the settings, tap TUNR ON DEVICE at the upper right corner and the device will be initialized. The App will send start instructions and the device will start and operate.
- step 7 After initialization settings, the App will return automatically to the home page.

- - End

7.5 Initial Settings

Tap **Country/Region** and select the country where the inverter is installed. For countries except Australia and Germany, the initialization is completed.

The actual initializing procedure may differ due to different countries. Please follow the actual App guidance.

For some countries, you should initialize parameters according to local grid requirements. For details, see "6.5 Initializing the Device".

7.6 Function Overview

Ħ

The App provides parameter viewing and setting functions, as shown in the following figure.

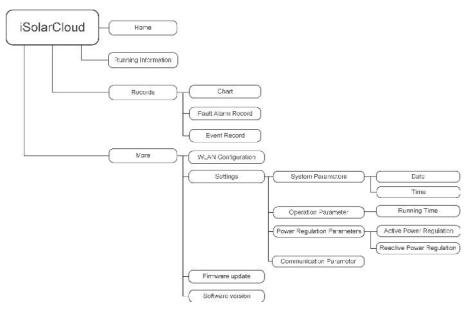


figure 7-4 App Key Function Menu

7.7 Home

Home page of the App is shown in the following figure.

▲ 🖬 🤨 …		≰ ≋uil 82% 0 1	3:42
	5G3.0R5 SN: 111111111		
Standby		+	
w		40-0	
<u></u>		X	
Real-time Power			
		0	W
Nominal Power		7.0 k	Np•
Today Yield			
		0.0 k	Wh
Total Yield		0.0 k/	Wb
A 5	3 (3)	
Home Bun Into	emition Reco	rde Man	1.1

figure 7-5 Home

table 7-1 Home Page Description

No.	Name	Description		
1	Inverter state	Present operation state of the inverter		
		Shows the PV power generation power, feed-in power, etc.		
2	Energy flow	The line with an arrow indicates energy flow between con-		
2	chart	nected devices, and the arrow pointing indicates energy		
		flow direction.		
3	Real-time	Shows the present output power of the inverter.		
power		Shows the present output power of the inverter.		
4	Nominal	Shows the installed newer of the invertor		
4 power		Shows the installed power of the inverter.		
5	Today yield	Shows today power generation of the inverter		
6	Total yield	Shows accumulative power generation of the inverter		
7	Navigation bar	Includes menus of "Home", "Run Infomation", "Records"		
/	Navigation Dai	and "More".		

If the inverter runs abnormally, the fault icon **A** will appear on the upper left corner of the screen. Users can tap the icon to view detailed fault information and corrective measures.

7.8 Run Information

Tap **Run Information** on the navigation bar to enter the screen showing running information, slide the screen upwards to view all detailed information.

Item	Description
PV information	Shows voltage and current of every PV string.
Inverter information	Shows basic information such as running state, on-grid running time, negative voltage to grid, bus voltage, internal air tempera- ture, inverter efficiency, etc.
Input	Shows total DC power, voltage and current of MPPT1 and MPPT2.
Output	Shows daily/monthly/annual/total yield, total active/reactive/ap- parent power, total power factor, grid frequency, phase voltage and current.
Meter information	Shows active power and phase active power of the meter.

table 7-2 Description of Run Information

7.9 Records

Tap **Records** on the navigation bar to enter the screen showing event records, as shown in the following figure.

ال له،	CRD5		1	
🔼 Cristl				
🗥 Fault Alam Record				>
Event Record				

figure 7-6 Records

Chart

Tap **Chart** to enter the screen showing daily power generation, as shown in the following figure.

figure 7-7 Chart

The App displays power generation records in a variety of forms, including daily power generation graph, monthly power generation histogram, annual power generation histogram and total power generation histogram.

table 7-3 Description of Power Curve

Item	Description
Daily	Daily curve that indicates the real-time power.
Month	Monthly curve that indicates daily yield and equivalent hours in a month.
Year	Annual curve that indicates monthly yield and equivalent hours in a
rear	year.
Total	A curve that indicates annual yield and equivalent hours since
TULAI	installation.

Fault Alarm Record

Tap Fault Alarm Record to enter the screen, as shown in the following figure.

+384 +384	¢ ≈ h." h." s	ଷ \$ 10(68% ■) 18:08
< в	ACK	
FAU	ULT ALARM RECORD	(17)
	2020-10-12 🛅 🗕	2020-10-12 🛅
0	Grid Power Outage	
	Occurrence Time: 2020-10	+12.18:06:39
	Alarm Level: Important	
0	Grid Power Outage	
	Occurrence Time: 2020-10	-12 16:57:07
	Alarm Level: Important	
0	Grid Power Outage	
	Occurrence Time: 2020-10	+12 16:56:56
	Alarm Level: Important	
0	Grid Power Outage	
	Occurrence Time: 2020-10	-12 16:44:35
	Alarm Level: Important	
0	Grid Power Outage	
	Occurrence Time: 2020-10	12 14:45:29

figure 7-8 Fault Alarm Record

Click is to select a time segment and view corresponding records.

Select one of the records in the list and click the record, to view the detailed fault info as shown in following figure.

• ? h. h. 2000	ଔ\$4 D (68% ■) 18:08
< васк	
GRID POWER OUTA	GE
Alarm Level: Important	
Occurrence Time: 2020-1	0-12 18:06:39
Alarm ID: 10	
Repair Advice	
Generally, the device is ret after the grid recovers to i repeatedly: 1.Check if the grid power 2.Check if AC cables are: 3.Check if AC cables are: terminals (with or without connection). 4.If the fault still exists, P service center of sungrow	normal. If the fault occurs supply is normal; all firmly connected. connected to the correct live line and reverse lease contact customer

figure 7-9 Detailed Fault Alarm Information

Event Record

Tap Event Record to enter the screen, as shown in the following figure.

		A 🖬 😗 …	孝 奈 _{.4} 1 82% @ 13:43	
		< BACK EVENT RECORDS (1)		
		2020-09-29 🛅 –	2020-09-29	
		Standby Occurrence Time: 2020-09	-29 11:17:29	
		figure 7-10 E	vent Record	
0	Click 🔤 to select a tim	e segment and	d view correspo	onding records.

7.10 More

Tap **More** on the navigation bar to enter the corresponding screen, as shown in the following figure.

8	WLAN Configuration	
0	Settings	
Ţ	Firmware Update	
10	Software Version	
	LOGOUT	

figure 7-11 More

In addition to viewing the WLAN configuration and App software version, the **More** screen supports the following operations:

- Set parameters including inverter system parameters, operation parameters, power regulation parameters and communication parameters.
- Upgrade inverter firmware.

7.10.1 System Parameters

Tap Settings \rightarrow System Parameters to enter the corresponding screen, as shown in the following figure.

< BACK	
SYSTEM PARAMETERS	
Boot/Shutdown Boot	
Date Setting 2020-09-29	
Time Setting 13:43:18	
ARM Software Version LCD_BERYL-S_V11_V01_A	
MDSP Software Version MDSP BERYL S V11 V01 A	

figure 7-12 System Parameters

Boot/Shutdown

Tap **Boot/Shutdown** to send the boot/shutdown instruction to the inverter.

For Australia and New Zealand, when the DRM state is DRM0, the "Boot" option will be prohibited.

Date/Time

The correct system time is very important. Wrong system time will directly affect the data logging and power generation value. The clock is in 24-hour format.

7.10.2 Operation Parameters

Running Time

Tap Settings→Operation Parameters→Running Time to enter the corresponding screen, on which you can set "Connecting Time" and "Reconnecting Time".

< BACK		
RUNNING TIM	ΛE	
Connecting Time 60 s	l.	
Reconnecting Tir 60 s	ne	

figure 7-13 Running Time

PID Parameters

Tap Settings→Operation Parameters→PID Parameters to enter the corresponding screen, on which you can set "PID Parameters".

0

figure 7-14 PID Setting

table 7-4 PID Parameter Description

Parameter	Description
	Set enabling/disabling of the PID night recovery function. PID
PID Recovery	night recovery function operates between 22:00 pm and 5:00
	am by default.

AFCI Parameters(Optional)

Tap Settings \rightarrow Operation Parameters \rightarrow AFCI Parameters to enter the corresponding screen, on which you can set "AFCI Parameters".

< васк	
AFCI PARAMETERS	
AFCI Self-test	
AFCI Activation On	
Clear AFCI Alarm	

figure 7-15 AFCI Setting

7.10.3 Power Regulation Parameters

Active Power Regulation

Tap Settings \rightarrow Power Regulation Parameters \rightarrow Active Power Regulation to enter the screen, as shown in the following figure.

HORE AN AN SOF	0.034	152% 💌 20.23
< васк		
ACTIVE POWER R	EGULATION	
Active Power Soft Sta	rt after Fault	
Active Power Soft Sta 360 s	rt Time after Fa	ult
Active Power Gradient	t Control	
Active Power Decline	Gradient	
Active Power Rising G 16 %/min	radient	
Active Power Setting I	Persistence	
Active Power Limit		
Active Power Limit Ra	tio	
DRM		

figure 7-16 Active Power Regulation

table 7-5 Description of Active Power Regulation Parameters

Parameter	Description	Range
Active Power Soft Start after Fault	Switch for activating/deactivating the func- tion of active power soft start after a fault occurs	On/Off
Active Power Soft Start Time after Fault	The soft start time required for raising active power from 0 to rated value after a fault occurs	1 s-1200 s
Active Power Gradient Control	Set whether to enable active power gradient control	On/Off

Parameter	Description	Range	
Active Power Decline	Decline gradient of inverter active power per	3 %/min –	
Gradient	minute	• • • • • • • • • • • • • • • • • • • •	
Active Power Rising	Rising gradient of inverter active power per	• 6000 % (min	
Gradient	minute %/min		
Active Power Setting	Switch for activating/deactivating the func-	On/Off	
Persistence	tion of active power setting persistence		
Active Power Limit	Switch for limiting active power	On/Off	
Active Power Limit	The ratio of active power limit to rated power	0.0 % -	
Ratio	in percentage	110.0 %	
DRM	Switch for activating/deactivating the DRM	On/Off	
	function	On/Off	

Reactive Power Regulation

Tap Settings \rightarrow Power Regulation Parameters \rightarrow Reactive Power Regulation to enter the screen, as shown in the following figure.

*00000 Sall Sall \$605	ほび米田(50%) 胚) 20:21
< BACK	
REACTIVE POWER REG	ULATION
Reactive Power Setting Persistence	
Reactive Power Regulation N	vlode >
Reactive Response	
Reactive Response Time	
0,2 s	
PF	
1.000	

figure 7-17 Reactive Power Regulation

table 7-6 Description of Reactive Power Regulation Parameters

Parameter	Description	Range	
Reactive Power Set-	Switch for activating/deactivating the func-	On/Off	
ting Persistence	tion of reactive power setting persistence		
Reactive Power Reg-		Off/PF/Qt/Q	
ulation Mode	Off/PF/Qt/Q(P)/Q(U)	(P)/Q(U)	
Reactive Response	Switch for activating/deactivating the func-	0	
neactive nesponse	tion of reactive response	On/Off	
Reactive Response	Time for reactive response	0.2 c	
Time	Time for reactive response	0.2 s	

"Off" Mode

The reactive power regulation function is disabled. The PF is fixed at +1.000. **"PF" Mode**

The power factor (PF) is fixed and the reactive power is regulated by the parameter PF. The PF ranges from 0.8 leading to 0.8 lagging.

- Leading: the inverter is sourcing reactive power to the grid.
- Lagging: the inverter is injecting reactive power into the grid.

"Qt" Mode

In the Qt mode, the reactive power can be regulated by the parameter Q-Var limits (in %). The system rated reactive power is fixed, the system injects reactive power according to the delivered reactive power ratio. The "Reactive Power Ratio" is set through the App.

The setting range of the reactive power ratio is from -100 % to 100 %, corresponding to the ranges of inductive and capacitive reactive power regulation respectively.

"Q(P)" Mode

The PF of the inverter output varies in response to the output power of the inverter.

table 7-7 "Q(P)" Mode Parameters Explanation

Parameter	Explanation	Range
Q(P) Curve	Select corresponding curve according to local regulations	A, B, C*
QP_P1	Output power at point P1 on the Q(P) mode curve (in %)	20.0 % - 100.0 %
QP_P2	Output power at point P2 on the Q(P) mode curve (in %)	20.0 % - 100.0 %
QP_P3	Output power at point P3 on the Q(P) mode curve (in %)	20.0 % – 100.0 %
QP_K1	Power factor at point P1 on the Q(P) mode curve	Curve A/C:
QP_K2	Power factor at point P2 on the Q(P) mode curve	0.800 to 1.000
QP_K3	Power factor at point P3 on the Q(P) mode curve	Curve B: -0.600 to 0.600
QP_ EnterVoltage	Voltage for Q(P) function activation (in %)	100.0 % – 110.0 %
QP_ ExitVoltage	Voltage for Q(P) function deactivation (in %)	90.0 % - 100.0 %
QP_ ExitPower	Power for Q(P) function deactivation (in %)	1.0 % - 20.0 %
QP_ EnableMode	Unconditional activation/deactivation of Q(P) function	Yes, No

* Curve C is reserved and consistent with Curve A currently.

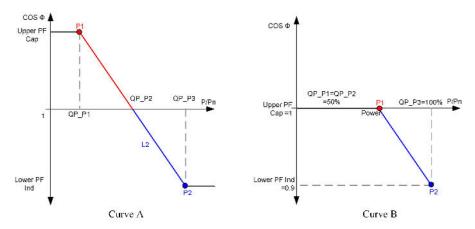


figure 7-18 Reactive Power Regulation Curve in Q(P) Mode

"Q(U)" Mode

The reactive power output of the inverter varies in response to the grid voltage.

Parameter	Explanation	Range
Q(U) curve	Select corresponding curve according to local regulations	A, B, C*
Hysteresis Ratio	Voltage hysteresis ratio on the Q(U) mode curve	0.0 % - 5.0 %
QU_V1	Grid voltage limit at point P1 on the Q(U) mode curve (in %)	80.0 % - 100.0 %
QU_V2	Grid voltage limit at point P2 on the Q(U) mode curve (in %)	80.0 % - 110.0 %
QU_V3	Grid voltage limit at point P3 on the Q(U) mode curve (in %)	100.0 % - 120.0 %
QU_V4	Grid voltage limit at point P4 on the Q(U) mode curve (in %)	100.0 % - 120.0 %
QU_Q1	Value of Q/Sn at point P1 on the Q(U) mode curve (in %)	-60.0 % to 0.0 %
QU_Q2	Value of Q/Sn at point P2 on the Q(U) mode curve (in %)	-60.0 % to 60.0 %
QU_Q3	Value of Q/Sn at point P3 on the Q(U) mode curve (in %)	-60.0 % to 60 %

table 7-8 "Q(U)" Mode Parameter Explanation

Parameter	Explanation	Range
QU_Q4	Value of Q/Sn at point P4 on the Q(U) mode curve (in %)	0.0 % to 60.0 %
QU_ EnterPower	Active power for Q(U) function activation (in %)	20.0 % - 100.0 %
QU_ ExitPower	Active power for Q(U) function deactivation (in %)	1.0 % - 20.0 %
QU_ EnableMode	Unconditional activation/deactivation of Q(U) function	Yes, No, Yes (Limited by PF)
QU_Limited PF Value	Preset PF value	0 – 0.95

* Curve C is reserved and consistent with Curve A currently.

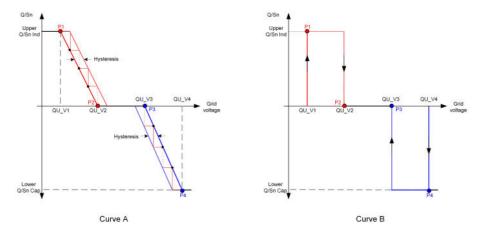


figure 7-19 Reactive Power Regulation Curve in Q(U) Curve

7.10.4 Communication Parameters

Tap Settings \rightarrow Communication Parameters to enter the corresponding screen, as shown in the following figure. The device address ranges from 1 to 246.

< BACK		< BACK
COMMUNICATION PARAMETERS		SERIAL PORT PARAMETERS
Serial Port Parameters		Device Address

figure 7-20 Communication Parameters

7.10.5 Firmware Update

To avoid download failure due to poor on-site network signal, it is recommended to download the firmware package to the mobile device in advance.

step 1 Enable the "Mobile data" of the mobile device.

step 2 Open the App, tap 🗘 at the upper right corner and select Firmware Download.

Login	۰۰ ا
	Ø
Remember Me	
LC	IGIN
Forgot Password	
Selec	t Server
WLAN Co	onfiguration
Firmware	e Download
Lan	guage
Ca	ancel

figure 7-21 Firmware Download

step 3 Select the firmware from the file list and download. Tap Downloaded to view successfully downloaded firmware package.

< BACK	< BACK
FIRMWARE DOWNLOAD	File List Downloaded
File List Downloaded	3 Phase PV_SG110CX_Package_202
3 Phase PV_SG250HX_Package_202	
3 Phase PV_SG110CX_Package_202	

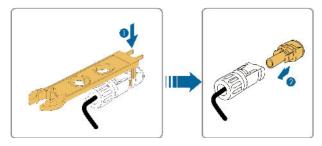
figure 7-22 Downloading Firmware Package

step 4 Login the App via local access mode. Refer to "7.4 Login".

step 5 Tab More on the App home screen and then tab Firmware Upgrade. Select the desired upgrade package to upgrade the firmware.

< BACK
FIRMWARE UPDATE
To update, select file from list below
Available Files
3 Phase PV_SG110CX_Package_20210118.zip

figure 7-23 Updating Firmware


- - End

8 System Decommissioning

8.1 Disconnecting the Inverter

For maintenance or other service work, the inverter must be switched off. Proceed as follows to disconnect the inverter from the AC and DC power sources. Lethal voltages or damage to the inverter will follow if otherwise.

- step 1 Disconnect the external AC circuit breaker and secure it against reconnection.
- step 2 Rotate the DC switch to the "OFF" position for disconnecting all of the PV string inputs.
- step 3 Wait about 10 minutes until the capacitors inside the inverter completely discharge.
- step 4 Ensure that the DC cable is current-free via a current clamp.
- step 5 Insert a MC4 wrench into the notch and press the wrench with an appropriate force to remove the DC connector.

- step 6 Lay the tool in the location of snap and press the tool down to remove the AC connector. Ensure that the AC wiring terminals are voltage-free via a multimeter, and remove the AC wires and communication wires.
- step 7 Install the MC4 waterproof plugs.

For further disconnection and reconnection instructions, please visit the webpage of respective component manufacturer.

- - End

8.2 Dismantling the Inverter

ACAUTION

Risk of burn injuries and electric shock!

Do not touch any inner live parts until for at least 10 minutes after disconnecting the inverter from the utility grid and the PV input.

- step 1 Refer to "5 Electrical Connection" for the inverter disconnection of all cables in reverse steps.
- step 2 Dismantle the inverter referring to "4 Mechanical Mounting" in reverse steps.
- step 3 If necessary, remove the wall-mounting bracket from the wall.
- **step 4** If the inverter will be reinstalled in the future, please refer to "3.2 Inverter Storage" for a proper conservation.

- - End

8.3 Disposal of the Inverter

Users take the responsibility for the disposal of the inverter.

NOTICE

Some parts and devices of the inverter, such as the capacitors, may cause environmental pollution.

Do not dispose of the product together with household waste but in accordance with the disposal regulations for electronic waste applicable at the installation site.

9 Troubleshooting and Maintenance

9.1 Troubleshooting

When an error or an alarm occurs, the code will be displayed both on the LCD screen and the App.

Alarm ID	Alarm Name	Corrective Measures		
002, 003, 014	Grid overvoltage	Generally, the inverter will be reconnected to the grid after the grid recovers. If the alarm occurs frequently:		
		 Measure the grid voltage, and contact the local utility grid company for solutions if the grid voltage exceeds the specified value. 		
		2. Check, through the App, whether the protection parameters are appropriately set.		
		3. Check whether the cross-sectional area of the		
		AC cable meets the requirement.		
		4. If the alarm persists, contact SUNGROW.		
004	Grid undervoltage	Generally, the inverter will be reconnected to the grid after the grid recovers. If the alarm occurs frequently:		
		1. Measure the grid voltage, and contact the local utility grid company for solutions if the grid voltage is below the specified value.		
		2. Check, through the App, whether the protection parameters are appropriately set.		
		3. Check whether the AC cable is firmly in place.		
		4. If the alarm persists, contact SUNGROW.		

The ID and corrective measures are as follows:

Alarm ID	Alarm Name	Corrective Measures	
008	Grid	Generally, the inverter will be reconnected to the	
008	overfrequency	grid after the grid recovers. If the alarm occurs	
009	Grid underfrequency	 frequently: Measure the grid frequency, and contact the local utility grid company for solutions if the grid frequency is beyond the specified range. Check, through the App, whether the protection parameters are appropriately set. If the alarm persists, contact SUNGROW. 	
010	Grid Power Outage	 Generally, the inverter will be reconnected to the grid after the grid recovers. If the alarm occurs frequently: 1. Check whether the grid supplies power reliably. 2. Check whether the AC cable is firmly in place. 3. Check whether the AC cable is correctly connected (whether the live wire and the N wire are in correct place). 4. Check whether the AC switch or circuit breaker is disconnected. 5. If the alarm persists, contact SUNGROW. 	
012	Overhigh leak- age current	 The alarm can be caused by poor sunlight or damp environment, and the inverter will be recon- nected to the grid after the environment is improved. If the environment is normal, check whether the AC and DC cables are well insulated. If the alarm persists, contact SUNGROW. 	
013	Grid abnormal	 Generally, the inverter will be reconnected to the grid after the grid recovers. If the alarm occurs frequently: 1. Measure the grid frequency, and contact the local utility grid company for solutions if the grid frequency exceeds the specified value. 2. If the alarm persists, contact SUNGROW. 	

Alarm ID	Alarm Name	Corrective Measures
028, 029	PV reverse con- nection fault	 Check whether the corresponding string is of reverse polarity. If so, disconnect the DC switch and adjust the polarity when the solar radiation is low and the string current drops below 0.5A. If the fault is not caused by the foregoing reasons and still exists, please contact Sungrow Service.
037	Excessively high ambient temperature	 Check whether the inverter is directly exposed to sunlight. If so, take some shading measures. Check and clean the air ducts. Check whether the sub-alarm ID 070 (fan alarm) occurs through the App. If so, replace the faulty fan. If the alarm persists, contact SUNGROW.
043	Excessively low ambient temperature	 Stop and disconnect the inverter. Restart the inverter when the ambient tempera- ture is within the permissible range.
039	Low system in- sulation resistance	 Wait for the inverter to recover. If the fault occurs frequently: 1. Check whether the ISO resistance protection value is excessively high via the APP or the LCD, and ensure that it complies with the local regulations. 2. Check the resistance to ground of the string and DC cable. Take correction measures in case of short circuit or damaged insulation layer. 3. If the cable is normal and the fault occurs on rainy days, check it again when the weather turns fine. 4. If the fault occurs on a cloudy day without rain but there is stagnant water or vegetation on site, clear the water and vegetation. If the fault persists, check it again when the weather turns fine. 5. If the fault is not caused by the foregoing reasons and still exists, please contact Sungrow Service.

Alarm ID	Alarm Name	Corrective Measures	
		1. Check whether the AC cable is correctly	
		connected.	
106	Grounding cable	2. Check whether the grounding cable and wire	
	fault	cores are wrongly insulated.	
		3. If the alarm persists, contact SUNGROW.	
		1. Disconnect the DC inputs and check whether	
		the DC cables are damaged, whether the wiring	
		terminals or fuses, if necessary, are loose or in poor	
		contact, and whether there is a PV module burnt. If	
000	Aug fault	so, take corresponding corrective measures.	
088	Arc fault	2. After taking corresponding measures in step 1,	
		reconnect the DC inputs. Remove the arc fault	
		through the App, and therefore the inverter will	
		recover.	
		3. If the alarm persists, contact SUNGROW.	
		The inverter can operate normally.	
		1. Check whether the related cable connection and	
503, 504, 505, 506,	System alarm	terminals are abnormal, and check whether the	
505, 500, 513	System alarm	ambient environment is abnormal. If so, take cor-	
515		rective measures.	
		2. If the alarm persists, contact SUNGROW.	
021, 022,		1. Wait for the inverter to recover.	
036, 038,		2. Disconnect the AC and DC switches or circuit	
041, 044,		breakers, and connect them again after 15 minutes.	
048, 100,		3. If the alarm persists, contact SUNGROW.	
105, 107,	System fault		
200, 201,	-		
202, 207,			
306, 312,			
315, 316,			
324			

9.2 Maintenance

9.2.1 Maintenance Notices

The DC switch can be secured with a lock in the OFF position or a certain angle beyond the OFF position.

DANGER

Risk of inverter damage or personal injury due to incorrect service!

 Always keep in mind that the inverter is powered by dual sources: PV strings and utility grid.

Before any service work, observe the following procedure.

- Disconnect the AC circuit breaker and then set the DC load-break switch of the inverter to OFF;
- The DC switch can be secured with a lock in the OFF position or a certain angle beyond the OFF position.
- · Wait at least 10 minutes for inner capacitors to discharge completely;
- Verify that there is no voltage or current before pulling any connector.

ACAUTION

Keep non-related persons away!

A temporary warning sign or barrier must be posted to keep non-related persons away while performing electrical connection and service work.

NOTICE

- Restart the inverter only after removing the fault that impairs safety performance.
- As the inverter contains no component parts that can be maintained, never arbitrarily replace any internal components.
- For any maintenance need, please contact SUNGROW. Otherwise, SUN-GROW shall not be held liable for any damage caused.

Servicing of the device in accordance with the manual should never be undertaken in the absence of proper tools, test equipments or the latest revision of the manual which has been clearly and thoroughly understood.

Item	Method	Period
	Check the temperature and dust of	Six months to a year
System clean	the inverter. Clean the inverter enclo-	(depending on the dust con-
	sure if necessary.	tents in air)
	Check whether all cable are firmly	
Electrical	connected in place.	6 months after commission-
connection	Check whether there is damage to	ing and then once or twice a
connection	the cables, especially the surface in	year.
	contact with metal.	
	• Visual check for any damage or deformation of the inverter.	
General status of the system	Check any abnormal noise during the operation.	Every 6 months
	Check each operation parameter.	
	Be sure that nothing covers the heat sink of the inverter.	

9.2.2 Routine Maintenance

10 Appendix

10.1 Technical Data

Parameter	SG2.0RS-S	SG2.5RS-S	SG3.0RS-S
Input (DC)			
Recommended max. PV	3.0 kWp	3.75 kWp	4.5 kWp
input power			
Max. PV input voltage	600 V *		
Min. PV input voltage /	40 V / 50 V		
Start-up input voltage			
Nominal input voltage	360 V		
MPP voltage range	40 V - 560 V		
No. of MPPTs	1		
Default No. of PV strings	1		
per MPPT			
Max. PV input current	16 A		
Max. DC short-circuit	20 A		
current			
Output (AC)			
Nominal AC output power	2000 W	2500 W	3000 W
Max. AC output apparent	2000 VA	2500 VA	3000 VA
power			
Max. AC output current	9.1 A	11.4 A	13.7 A
Nominal AC voltage	220 V / 230 V / 24	0 V	
AC voltage range	154 V AC - 286 V	' AC	
Nominal grid frequency /	50 Hz / 45 Hz – 5	5 Hz, 60 Hz / 55 Hz	– 65 Hz
Grid frequency range			
Harmonic (THD)	< 3 % (at nominal p	oower)	
Power factor at nominal	> 0.99 / 0.8 leading	g - 0.8 lagging	
power / Adjustable power			
factor			
Feed-in phases / connec-	1 / 1		
tion phases			
Efficiency			
Max. efficiency / Euro-	98.0 % / 97.3 %	98.0% / 97.5 %	98.0 % / 97.5 %
pean efficiency			

Parameter	SG2.0RS-S	SG2.5RS-S	SG3.0RS-S
Protection			
Grid monitoring	Yes		
DC reverse polarity	Yes		
protection			
AC short circuit protection	Yes		
Leakage current	Yes		
protection			
Surge Protection	DC type II / AC typ	e II	
DC switch	Yes		
PV string current	Yes		
monitoring			
PID recovery	Yes		
Arc fault circuit interrupter	Optional		
(AFCI)			
PID recovery function	Yes		
General Data			
Dimensions (W x H x D)	320 mm x 225 mn	n x 120 mm	
Weight	6 kg		
Mounting method	Wall-mounting bra	icket	
Topology	Transformerless		
Degree of protection	IP65		
Operating ambient tem-	-25°C to +60°C		
perature range			
Allowable relative humidity	0 – 100 %		
range (non-condensing)			
Max. operating altitude	4000 m		
Cooling method	Natural cooling		
Display	LED digital display	& LED indicator	
Communication	Ethernet / WLAN /	RS485 / DI (Ripple	control & DRM)
DC connection type	MC4 (Max. 6 mm ²)	
AC connection type	Plug and play (Ma	x. 6 mm²)	
Grid support	Active/reactive por	wer control and pov	ver ramp rate
	control		

 * The inverter enters standby state when the input voltage ranges between 560 V and 600 V.

Parameter	SG3.0RS	SG3.6RS	SG4.0RS
Input (DC)			
Recommended max. PV	4.5 kWp	5.4 kWp	6 kWp
input power			
Max. PV input voltage	600 V *		
Min. PV input voltage /	40 V / 50 V		
Start-up input voltage			
Nominal input voltage	360 V		
MPP voltage range	40 V - 560 V		
No. of MPPTs	2		
Default No. of PV strings per MPPT	1		
Max. PV input current	32 A (16 A / 16 A)		
Max. DC short-circuit	40 A (20 A / 20 A)		
current			
Output (AC)			
Nominal AC output power	3000 W	3680 W	4000 W
Max. AC output apparent power	3000 VA	3680 VA	4000 VA
Max. AC output current	13.7 A	16 A	18.2 A
Nominal AC voltage	220 V / 230 V / 24	0 V	
AC voltage range	154 V AC - 286 V	AC	
Nominal grid frequency /	50 Hz / 45 Hz – 5	5 Hz, 60 Hz / 55 Hz	z – 65 Hz
Grid frequency range			
Harmonic (THD)	< 3 % (at nominal p	oower)	
Power factor at nominal power / Adjustable power factor	> 0.99 / 0.8 leading	g - 0.8 lagging	
Feed-in phases / connec-	1 / 1		
tion phases			
Efficiency			
Max. efficiency / Euro-	98.1 % / 97.0 %	98.1 % / 97.1 %	98.1 % / 97.4 %
pean efficiency			
Protection			
Protection Grid monitoring	Yes		
	Yes Yes		

Parameter	SG3.0RS	SG3.6RS	SG4.0RS
Leakage current	Yes		
protection			
Surge Protection	DC type II / AC type	e II	
DC switch	Yes		
PV string current	Yes		
monitoring			
Arc fault circuit interrupter	Optional		
(AFCI)			
PID recovery function	Yes		
General Data			
Dimensions (W x H x D)	410 mm x 270 mm	1 x 150 mm	
Weight	10 kg		
Mounting method	Wall-mounting bra	cket	
Topology	Transformerless		
Degree of protection	IP65		
Operating ambient tem-	-25℃ to +60℃		
perature range			
Allowable relative humidity	0-100 %		
range (non-condensing)			
Max. operating altitude	4000 m		
Cooling method	Natural cooling		
D's sta			
Display	LED digital display	& LED indicator	
Display Communication		& LED indicator RS485 / DI (Ripple	control & DRM)
		RS485 / DI (Ripple	control & DRM)
Communication	Ethernet / WLAN /	RS485 / DI (Ripple	control & DRM)
Communication DC connection type	Ethernet / WLAN / MC4 (Max. 6 mm ²) Plug and play (Max	RS485 / DI (Ripple	

 * The inverter enters standby state when the input voltage ranges between 560 V and 600 V.

Parameter	SG3.0RS	SG3.6RS
Input (DC)		
Recommended max. PV input	7.5 kWp	9 kWp
power		
Max. PV input voltage	600 V *	
Min. PV input voltage / Start-up in-	40 V / 50 V	
put voltage		

Parameter	SG3.0RS	SG3.6RS	
Nominal input voltage	360 V		
MPP voltage range	40 V - 560 V		
No. of MPPTs	2		
Default No. of PV strings per	1		
MPPT			
Max. PV input current	32 A (16 A / 16 A)		
Max. DC short-circuit current	40 A (20 A / 20 A)		
Output (AC)			
Nominal AC output power	4999 W for "AU", 5000	6000 W	
	W for others	_	
Max. AC output apparent power	4999 VA for "AU",	6000 VA	
	5000 VA for others		
Max. AC output current	21.7 A for "AU", 22.8 A	27.3 A	
	for others		
Nominal AC voltage	220 V / 230 V / 240 V		
AC voltage range	154 V AC - 286 V AC		
Nominal grid frequency / Grid fre-	50 Hz / 45 Hz - 55 Hz, 60 Hz / 55 Hz - 65 Hz		
quency range			
Harmonic (THD)	< 3 % (at nominal power)		
Power factor at nominal power /	> 0.99 / 0.8 leading - 0.8 lagging		
Adjustable power factor			
Feed-in phases / connection	1/1		
phases Efficiency			
Max. efficiency / European	98.1 % / 97.5 %	98.1 % / 97.8 %	
efficiency	30.1 /07 31.3 /0	30.1 /07 31.0 /0	
Protection			
Grid monitoring	Yes		
DC reverse polarity protection	Yes		
AC short circuit protection	Yes		
Leakage current protection	Yes		
Surge Protection	DC type II / AC type II		
DC switch	Yes		
PV string current monitoring	Yes		
Arc fault circuit interrupter (AFCI)	Optional		
PID recovery function	Yes		
General Data			
Dimensions (W x H x D)	410 mm x 270 mm x 15	0 mm	

Parameter	SG3.0RS	SG3.6RS
Weight	10 kg	
Mounting method	Wall-mounting bracket	
Topology	Transformerless	
Degree of protection	IP65	
Operating ambient temperature	-25°C to +60°C	
range		
Allowable relative humidity range	0 – 100 %	
(non-condensing)		
Max. operating altitude	4000 m	
Cooling method	Natural cooling	
Display	LED digital display & LED	Dindicator
Communication	Ethernet / WLAN / RS48	5 / DI (Ripple control &
	DRM)	
DC connection type	MC4 (Max. 6 mm²)	
AC connection type	Plug and play (Max. 6 mm ²)	
Grid support	Active/reactive power co	ontrol and power ramp
	rate control	

 * The inverter enters standby state when the input voltage ranges between 560 V and 600 V.

10.2 Quality Assurance

When product faults occur during the warranty period, SUNGROW will provide free service or replace the product with a new one.

Evidence

During the warranty period, the customer shall provide the product purchase invoice and date. In addition, the trademark on the product shall be undamaged and legible. Otherwise, SUNGROW has the right to refuse to honor the quality guarantee.

Conditions

- After replacement, unqualified products shall be processed by SUNGROW.
- The customer shall give SUNGROW a reasonable period to repair the faulty device.

Exclusion of Liability

In the following circumstances, SUNGROW has the right to refuse to honor the quality guarantee:

- The free warranty period for the whole machine/components has expired.
- The device is damaged during transport.
- The device is incorrectly installed, refitted, or used.

- The device operates in harsh conditions beyond those described in this manual.
- The fault or damage is caused by installation, repairs, modification, or disassembly performed by a service provider or personnel not from SUNGROW.
- The fault or damage is caused by the use of non-standard or non-SUNGROW components or software.
- The installation and use range are beyond stipulations of relevant international standards.
- The damage is caused by unexpected natural factors.

For faulty products in any of above cases, if the customer requests maintenance, paid maintenance service may be provided based on the judgment of SUNGROW.

10.3 Contact Information

Should you have any question about this product, please contact us. We need the following information to provide you the best assistance:

- Model of the device
- Serial number of the device
- Fault code/name
- Brief description of the problem

China (HQ)	Australia
Sungrow Power Supply Co., Ltd	Sungrow Australia Group Pty. Ltd.
Hefei	Sydney
+86 551 65327834	+61 2 9922 1522
service@sungrowpower.com	service@sungrowpower.com.au
Brazil	France
Sungrow Do Brasil	Sungrow France
Sao Paulo	Lyon
+55 0800 677 6000	+33420102107
latam.service@sungrowamericas.com	service@sungrow-emea.com
Germany, Austria, Switzerland	Greece
Sungrow Deutschland GmbH	Service Partner - Survey Digital
Munich	+30 2391052757
+49 0800 4327 9289	service@sungrow-emea.com
service@sungrow-emea.com	

India	Italy	
Sungrow (India) Private Limited	Sungrow Italy	
Gurgaon	Verona	
+91 080 41201350	+39 0800 974739 (Residential)	
service@in.sungrowpower.com	+39 045 4752117 (Others)	
	service@sungrow-emea.com	
Japan	Korea	
Sungrow Japan K.K.	Sungrow Power Korea Limited	
Tokyo	Seoul	
+ 81 3 6262 9917	+82 70 7719 1889	
service@jp.sungrowpower.com	service@kr.sungrowpower.com	
Malaysia	Philippines	
Sungrow SEA	Sungrow Power Supply Co., Ltd	
Selangor Darul Ehsan	Mandaluyong City	
+60 19 897 3360	+63 9173022769	
service@my.sungrowpower.com	service@ph.sungrowpower.com	
Thailand	Spain	
Sungrow Thailand Co., Ltd.	Sungrow Ib é rica S.A.U.	
Bangkok	Mutilva	
+66 891246053	+34 948 05 22 04	
service@th.sungrowpower.com	service@sungrow-emea.com	
Romania	Turkey	
Service Partner - Elerex	Sungrow Deutschland GmbH Turkey	
service@sungrow-emea.com	Istanbul	
	+90 216 663 61 80	
	service@sungrow-emea.com	
UK	U.S.A, Mexico	
Sungrow Power UK Ltd.	Sungrow USA Corporation	
Milton Keynes	Phoenix	
	+1 833 747 6937	
+44 (0) 01908 414127	1 055 141 0951	

VietnamBelgium, Netherlands and Luxem-
bourg (Benelus)Sungrow Vietnambourg (Benelus)Hanoi+31 08000227012 (only for+84 918 402 140Netherlands)service@vn.sungrowpower.comservice@sungrow-emea.comPoland-

service@sungrow-emea.com

